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METHOD OF MOMENTS

The Method of Moments:
A Numerical Technique for
Wire Antenna Design

By W.D. Rawle
Smiths Aerospace

The Method of
Moments tech-
nique, as applied to

problems in electromag-
netic theory, was intro-
duced by Roger F.
Harrington in his 1967
seminal paper, “Matrix
Methods for Field

Problems” [1]. The implementation of the
Method of Moments, by Poggio and Burke at
Lawrence Livermore National Labs during
the 1970s, established this solution technique
as a mainstay in the design of wire and wire
array antennas.

This tutorial reviews the Method of
Moments (MoM) from a practicing RF engi-
neer’s perspective, with a view to providing
understanding of its foundations, as opposed
to rigorous mathematical exposition. The dis-
cussion begins with the formulation of
Pocklington’s integral equation, an integral
equation commonly used for wire antenna
problems. The solution to Pocklington’s equa-
tion, using the MoM, is then explained. The
integral equation solution yields the current
distribution on the wire which, in turn, is used
to calculate the antenna’s radiation character-
istics and feed point impedance.

Introduction
Throughout the history of physical science,

natural behaviors have been represented in
terms of integro-differential equations. In
many instances, behaviors are described in
terms of simple differential equations.

(1)

where the function x(t) is defined over the
domain of t. The differential operator then
yields the function v(t) which is also defined
over the domain of t.

In other instances, where the function v(t)
is known over the domain of t, specific values
of x may be derived from representative
expressions, such as Equation 2.

(2)

For example, if v(t) = k, x = kt1.
A special case arises when the function v(t)

is unknown and values of x are known at only
discrete values of t. This type of problem is
generally referred to as an integral equation
problem where the task is to determine the
function v(t) with boundary conditions
described by values of x at specific values of t.

The task of determining the current distri-
bution on a wire antenna resulting from an
arbitrary excitation may be readily stated in
terms of an integral equation problem. The
formulation begins with the development of
an integral expression which defines the elec-
tric field resulting from an arbitrary current
distribution on the wire. This integral expres-
sion will employ a Green’s function which
relates the electric field at an arbitrary obser-
vation point to the current at an arbitrary
source point. The integral equation problem
then employs the integral expression to relate
known electric field boundary conditions to an
unknown current distribution on the wire.

The MoM applies orthogonal expansions to
translate the integral equation statement into
a system of circuit-like simultaneous linear
equations. Basis functions are used to expand
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the current distribution. Testing functions are used to
invoke the electric field boundary conditions. Matrix
methods are then used to solve for the expansion coeffi-
cients associated with the basis functions. The current
distribution solution is then constructed from the expan-
sion coefficients. The antenna’s radiation characteristics
and feed point impedance are then derived from the cal-
culated current distribution.

Pocklington’s Integral Equation
A well-known formulation for simple wire antennas is

Pocklington’s integral equation. Figure 1 depicts a repre-
sentative geometry from which Pocklington’s equation
can be derived. A simple wire antenna is positioned along
the z axis in a Cartesian coordinate system. The current
is restricted to the centerline of the wire and directed
along the z axis. Elemental current segments are located
at coordinate z′. Field observation points are located at co-
ordinates z. A feedgap is positioned at z = 0. The electric
field along the surface of the wire and in the feedgap,
which establishes the boundary conditions for the prob-
lem, is defined as follows: Ez = 0 on the surface of the wire,
Ez = Vg/∆ z at the feedgap. Vg, the antenna excitation, is
normally set to 1.0 volts for input impedance calculations.
∆ z is commonly set equal the diameter of the wire.
However, it is possible to study the impact of feedgap
dimensions on antenna input impedance by varying the
value of ∆ z. With the conditions presented in Figure 1,
Pocklington’s equation may be written as Equation 3.

(3)

where

(4)

The variable R represents the distance between the
current source and field observation points. The variable
ρ specifies the radius of the wire. The current distribution
Iz(z′) is defined along the length of the wire from z′ =  l/2
to z′ = –l/2. The kernel [∂2/∂z

2 + k2] denotes the wave equa-
tion differential operator on the free space Green’s func-
tion e-jkR/4πR. The constant k specifies the free space
wave number. Ez(z) represents the electric field generated
by the current on the wire.

With a specific excitation applied, as modeled through
the appropriate boundary conditions, radiation character-
istics and feedpoint impedances are determined from
knowledge of the antenna’s current distribution Iz(z′). Of
the many techniques available to solve such integral
equation problems, the Method of Moments is one of the
industry’s more popular approaches.

The Method of Moments
The fundamental concept behind the MoM employs

orthogonal expansions and linear algebra to reduce the
integral equation problem to a system of simultaneous
linear equations. This is accomplished by defining the
unknown current distribution Iz(z′) in terms of an orthog-
onal set of “basis” functions and invoking the boundary
conditions—the values of the electric field on the surface
of the wire and in the feedgap—through the use of an
inner product formulation. This inner product operation
employs an orthogonal set of “testing” functions to enforce
the boundary conditions, in an average sense, along the
surface of the wire and in the feedgap. Moving the cur-
rent’s expansion coefficients to the outside of the integro-
differential operator permits the evaluation of known
functions, yielding values which are loosely defined as
impedances. The current’s expansion coefficients, the
orthogonal projections of the electric field boundary con-
ditions, and these so-called impedances are gathered into
a system of simultaneous linear equations. This system of
equations is solved to yield the current’s expansion coeff-
icents. The original current distribution is then deter-
mined by introducing these coefficents back into the basis
function expansion.

The solution procedure begins by defining the
unknown current distribution Iz(z′) in terms of an orthog-
onal set of basis functions. Two categories of basis func-
tions exist. Sub-domain basis functions, significantly
more popular in industry, subdivide the wire into small
segments and model the current distribution on each seg-
ment by a simple geometrical construct, such as a rectan-
gle, triangle, or sinusoidal arc. The amplitudes of these
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Figure 1  ·  Integral equation formulation.
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constructs represent the expansion function coefficients.
These simple constructs, illustrated in Figure 2, often
overlap to maintain continuity of the current distribution
along the wire. Entire domain basis functions employ a
more formal orthogonal expansion, such as a Fourier
series, to represent the current distribution along the
entire wire. Entire domain basis functions tend to yield
more complicated calculations for the so-called
impedances and, therefore, are less popular.

The introduction of the re-defined current distribution
reduces the integral equation to the form

(5)

where 

(6)

Cn = current’s expansion coefficient

Fn(z′) = basis function

The boundary conditions are now enforced through
the use of an inner product operator with a set of orthog-
onal testing functions. Each testing function is applied to
both sides of the integral equation, the inner product then
enforces the boundary condition at the location described
by the testing function. This operation may be thought of
as simply enforcing the boundary condition at a single
point on the wire. After each testing function operation,
the integral equation will appear as Equations 7 and 8.

(7)

where < > represents the inner product operator.

(8)

where Hm(z) is a testing function which has a non-zero
value for only a small segment of wire located at z = zm.

There are two common approaches to formulating the
orthogonal set of testing functions. The first approach, the
point matching or co-location technique, defines the test-
ing function in terms of Dirac delta functions (Eq. 9).

(9)

where zm are specific points on the wire at which the
boundary conditions are enforced. The zm are usually
selected to correspond with the midpoint of each basis
function. The second approach, Galerkin’s technique,
defines the testing function to be the same as the basis
function. Galerkin’s technique, although more complicat-
ed from a computational perspective, enforces the bound-
ary condition more rigorously than the point matching
technique. However, this more rigorous approach is sel-
dom required for simple wire antenna problems.

The entire boundary condition is enforced by applying
the complete set of testing functions. This operation yields
a set of integral equations.

(10)

where

(11)

(12)

(13)

This circuit-like set of simultaneous linear equations
will yield the value of Cn.

(14)

Limitations and Considerations
The validity of the assumptions introduced into MoM

type formulations are established through empirical
means. The codes incorporating these formulations are
run for a large number of test cases with the results com-
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Figure 2  ·  Typical basis functions.



pared to experimental observation. Certain topics have
received significant attention in the literature: the cur-
rent distribution on the wire (the “thin wire approxima-
tion”), the orthogonality and completeness of the basis
and testing functions, the modeling of the feedpoint exci-
tation, the numerical evaluation of Zmn, and the solution
technique which yields Cn from the set of simultaneous
linear equations. Although some of the assumptions con-
tinue to attract attention from a mathematically rigorous
perspective, the codes incorporating them have been thor-
oughly exercised and deemed suitable for antenna engi-
neering applications.

The most well-known of the codes using the MoM is
the Numerical Electromagnetics Code (NEC), which is
widely used to solve problems that can be defined as sets
of one or more “wires” (linear elements).

Summary
The Method of Moments is a popular solution tech-

nique for integral equation problems found in engineer-
ing electromagnetics. This tutorial has attempted to pre-
sent an outline of this technique from a practicing RF
engineer’s perspective with a minimum of mathematical
rigor. The essential elements of integral equation formu-
lation, basis and testing function definition, and reduc-
tion to a set of simultaneous linear equations, have been

reviewed. The interested reader is referred to the many
excellent textbooks on this subject, such as [2, 3, 4].
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