
January 2009 47

High Frequency Design

MICROWAVE FILTERS

An Improved Design Method
For Stepped Line Microwave
Filters with Broad Stop Bands

By Piotr Dyderski
Telecommunications Research Institute

The design problem
for filters attenuat-
ing signals with

frequencies outside the
useful (pass) bands can
be in many cases reduced
to the problem of design-
ing low pass or band-stop

filters with sufficiently large bandwidths. It
follows from the fact that some elements of
complex electronic systems, as for example the
radiating elements of antenna arrays, have
the characteristics similar to those shown in
Figure 1.

Among various possible implementations
of band-stop filters, those implemented as a
cascade connection of transmission line sec-
tions—the so-called stepped transmission line
band-stop filters [1, 2]—are especially suitable
for many applications. These filters are rather
simple to manufacture, and their small cross-
sections allow you to put them in place of spec-
ified sections of the transmission line. Among
all analytical design methods, the most gener-
al is the one described in [1 - 4]. Its essential
feature is the use of R-transformer as a proto-
type circuit together with the classical
Darlington-Riblet method [1 - 5]. Unfortu-
nately, the filters designed according to this
last method may be difficult to manufacture in
some cases because of the large spread of the
characteristic impedances among the line sec-
tions. This follows from the fact that corre-
sponding insertion loss function is formed by
an appropriate choice of characteristic
impedances of sections having equal electrical
lengths. Consequently, for a fixed number of
sections, the range of characteristic
impedances increases when the requirements

imposed on the relative stop band of the filter
become more restrictive.

Therefore, the aim of this paper is to pre-
sent the new approach that makes possible
the design of band-stop filters with required
insertion loss function (including filters with
broad stop bands), which can be easily imple-
mented in the prescribed technology. It can be
obtained by limiting the range of characteris-
tic impedances by application of optimization
methods with constraints. Due to the fact that
both characteristic impedances and electrical
lengths of the sections are variables during
the optimization process, this method belongs
to the class of amplitude-phase methods.

The optimization process starts with an
initial approximation found by means of an
appropriate analytical method [1 - 4].
Naturally, the efficiency of the optimization
strategy strongly depends on the quality of
initial approximation. For example, analytical

The technique described
here emphasizes proper

setup of initial parameters
before applying optimiza-

tion in the well-known
microwave EDA tools

Figure 1  ·  Reflection coefficient S11 of a typ-
ical half-wave radiating element with oper-
ating frequency band centered at 3.5 GHz.
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formulas presented in [3] can be used to obtain filters
with a maximum number of sections equal to 20, and
their further enhancement would be extremely cumber-
some. In the case of filters that require a large stop band,
the initial approximation obtained in this way is unsuit-
able for the optimization process. For this reason, the
original approach called “splining the insertion loss fre-
quency response” has been proposed by the author.

In order to confirm the usefulness of the presented
algorithm, three coaxial line filters have been designed,
manufactured and tested. For one of the filters, the splin-
ing procedure was used for the insertion loss frequency
response. Additionally, the influence of coaxial line step
discontinuities has been investigated on the filter
response.

Design Algorithm for Noncommensurate 
Band-Stop Filters

Let us consider the design of stepped transmission
line band-stop filters with the electrical scheme shown in
Figure 2.

The lumped-element susceptances Bi (i = 1, 2, ..., n + 1)
of the electrical scheme (see Fig. 2) represent discontinu-

ities appearing in places of step changes of the line
geometry. These susceptances can have capacitive
(Bi > 0) or inductive (Bi < 0) character, depending on
the kind of discontinuity. In general, the electrical
equivalent scheme of the discontinuity is more
complicated and the T or π two-port representation
can be used [6], [7].

It is assumed that optimal insertion loss func-
tion of the filter, similar to that shown in Figure 3,
should be obtained as a result of the design process,
which can be divided into two main stages. During
the first stage, taking the R-transformer prototype
circuit, the filter being initial approximation for the
optimization process is found [1 - 3]. Depending on

the assumed filter parameters (insertion loss response and
range of characteristic impedances of its particular sec-
tions), this stage can be reduced to the design of a filter for
which the R-transformer serves as the prototype. As an
additional procedure, splining the insertion loss frequency
response can be performed in this stage, as described later.
The second stage of the design process is the optimization
procedure for the filter structure.

Design of the Band-Stop Filters Based on the 
R-transformer Prototype Circuit

Let us assume that the output parameters defining
insertion loss function in the prescribed frequency range
are given (see Fig. 3), as well as the required characteris-
tic impedance range of particular filter sections, deter-
mined by Zmin and Zmax. According to the relations given
in [1 - 3], a minimum number of filter sections nmin can be
found, for which the requirements imposed on the inser-
tion loss response are satisfied. Next, for a given number
of filter sections n ≥ nmin, characteristic impedances of
particular sections should be found [1 - 3]. It should be
pointed out here that it is possible to design the filter sat-
isfying all imposed requirements and containing smaller
or greater number of sections n ≥ nmin. Reduction of the
number of sections leads to the larger spread of charac-
teristic impedances. Initial approximation for the opti-
mization process should be taken in the form of a filter
with such number of sections n, that the range of charac-
teristic impedances found analytically 〈Zmin A; Zmax A〉 is
related to the required impedance range 〈Zmin; Zmax〉 by
the following inequalities

(1)

where the numbers 20 and 35 appearing in formula (1)
determine the tolerance margin assumed by the author of
this paper. In case, when these conditions cannot be sat-
isfied, and when the initial approximation found analyti-
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Figure 2  ·  Electrical scheme of the stepped transmission line
band-stop filter.

Figure 3  ·  Example of the insertion loss function L of the
optimal and analytically designed filters.
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cally lies too far from the optimum, this approximation
can be found using the procedure of splining the insertion
loss frequency response, which is described in later.

Optimization Procedure for the Filter Structure
Let us assume that characteristic impedances and

electrical lengths of particular filter sections have been
found during the initial approximation stage of the design
process. Input admittance Yin = Gin + jBin of the filter
shown in Figure 2 can be determined by multiple use of
the standard impedance transformation equation, name-
ly (see Fig. 4a)

(2)

where Yin = Gin + jBin, YL = GL + jBL, βƒ = 2π/λƒ, and λƒ
is the line wavelength. For lossless TEM line section with
dielectrical constant εr we have  

Equation (2) written for the circuit of Figure 4b takes
the following form

(3)

This complex equation can be easily separated into the
real and imaginary parts, allowing all calculations to be
made using operations on real numbers only. The input
reflection coefficient Γ is related to the input admittance
through the following simple formulas (see Fig. 2):

(4)

The insertion loss function L(ƒ) of the filter is related
to the reflection coefficient Γ(ƒ) as follows

(5)

where S21(ƒ) is the coefficient of scattering matrix S.
In order to perform the optimization process (obtain-

ing optimal insertion loss response, see Fig. 3) the follow-
ing objective function should be applied

(6)

where W(ƒi) is the weighting function

(7)

Parameter La is the nominal value of insertion loss in
the stop band, (Leps – La) is the maximum loss deviation
in the stop band, and Lrm is maximum reflection loss in
the pass band (see Fig. 3). In the general case of ampli-
tude-phase synthesis, the vector of parameters “p” (vari-
ables during the optimization process) is composed of p ≡
[Z1,...,Zn,l1,...,ln]. The set of admissible solutions Φ deter-
mines the values of characteristic impedances and geo-
metrical lengths of the sections 

(8)

and the requirements imposed on the range of character-
istic impedances of particular sections are tightly
involved with the line geometry.

The objective function OFp(ƒi;p) satisfying the above
requirements takes the form 

(9)

where P(p; t1, t2) is the penalty component defined as fol-
lows
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Figure 4  ·  Illustration of the impedance (admittance)
transformation equation with (a) and without (b) the
influence of discontinuities.
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(10)

Positive weighting coefficients t1, t2 are gradually
incremented during consecutive iterations. Finally, the
optimization problem can be written as

(11)

Problem (11) can be solved by means of the ε-steepest
descent methods [8, 9]. The essence of these methods and
their application to the stepped transmission line band-
stop filter design was discussed extensively in [3, 10].

Application of the Optimization Procedure to the
Band-Stop Filters Implemented with Coaxial Line

Let us consider the band-stop filter design using the
coaxial line technology. (Experimental examples of these
filters will be described in the next section.) Cross- and
longitudinal-sections of the step change of coaxial line
inner conductor diameter [11] are shown in Figures 5a
and 5b, respectively. The equivalent circuit at reference
plane T is shown in Figure 5c.

The following equality holds for the plane T of the
step change of the line transversal dimensions [11]

(12)

The normalized susceptance B/Y0 can be calculated
from the formulas given in [11]. For this purpose it is nec-
essary to solve the following nonlinear equation 

(13)

The first, nonvanishing root of this equation can be
evaluated from the approximate relation [12, 13] 

(14)

where g = c/a and Zm(gχ) = Jm(gχ)Nm(χ) – Nm(gχ)Jm(χ)
is the combination of Bessel-Neumann function of the
order m.

The step changes of the coaxial line inner conductor
diameter presented in Figure 6 are approximately equiv-
alent. Equivalent circuit for the step change of outer con-
ductor dimensions of the coaxial line is given in [11].

Equivalent circuits of geometry changes for different
kinds of lines can be found in many publications, as for
example in [7].

It is recommended to perform the filter design first
without taking into account the effect of discontinuities.
Next for a chosen structure (layout of the dielectric sup-
ports) this process should be continued up to the end,
using the method in which presence of discontinuities is
assumed.

Procedure of Splining the Insertion Loss 
Frequency Response

Standard microwave band-stop filters incorporating
commensurate sections of transmission lines have as a
rule the periodically repeated stop bands, situated
around the odd harmonics of frequency ƒ0, which is the
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Figure 5  ·  Cross-section (a), longitudinal section (b)
and equivalent circuit (c) of the step change of outer
conductor diameter of the coaxial line.

Figure 6  ·  Equivalent circuits for step dimension
changes of coaxial line inner conductor (B ≅≅ B1).
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center frequency of the first stop band. (This is strictly true for
the TEM line. In case of the dispertion lines it refers to the wave-
length λ, see for example [14].) It means that pass bands separate
consecutive stop bands of the filter (see Fig. 7). (Similar situation
of the pass bands repetition occurs in case of the band-pass filters
[14].) The procedure of splining the insertion loss frequency
response uses the property that in the pass band, where the
reflection loss is small, input impedance of the filter is approxi-
mately equal to the terminal impedance Zin ≈ ZL (Yin ≈ YL), see
Figure 2. It is then possible to connect together the filters having
appropriate frequency shift of insertion loss functions, without
introducing significant deformation of their characteristics [15].
The initial approximation obtained by use of the spline procedure
has the characteristic impedance distribution, which is closer to
the optimum and provides excess reduction of the insertion loss
in the middle of the stop band (see Fig. 3).

Figure 7 illustrates periodicity of the insertion loss function of
an analytically designed band-stop filter with commensurate sec-
tions having λ0/4 length at the stop band center frequency ƒ0. The
second filter of the cascade structure should be designed to have
the central part of its stop band at 2ƒ0, that is its stop band should
be situated between the first and the second stop band of the first
filter. Due to the finite slope of insertion loss responses, the stop
band width of the second cascaded filter should be reduced in
order to minimize the overlapping effect. It can be assumed that
the insertion loss responses of cascaded filters should “intersect”
in the middle of the nominal value of the loss assumed in the stop
band (in dB scale), see Figure 8. Analogical procedures can be
applied in case of greater number of cascaded filters (see Fig. 9).

Example of Application of the Splining Procedure for the
Insertion Loss Frequency Responses in Order to Obtain
Initial Approximation for the Optimization Process

Let us consider the design of band-stop filter with stopband fre-
quency response described by means of the following parameters:
ƒd = 1.20 GHz, ƒ1 = 1.45 GHz, ƒ2 = 2.0 GHz, ƒu = 12 GHz, and also
S11 < –23 dB over the whole pass band and the minimum value of
the reflection losses in the stop band equal to 20 dB (see Fig. 3).
The admissible characteristic impedance range of particular filter
sections is limited by Zmin = 25 Ω and Zmax = 90 Ω. The character-
istic impedance range for the band-stop filter designed using R-
transformer with 20 sections is given by Zmin A = 10 Ω and Zmax A
= 240 Ω. As condition (1) is not satisfied, the procedure of splining
the insertion loss frequency response should be applied in order to
obtain better initial approximation for the optimization process.

Let us now assume that the band-stop filter composed of two fil-
ters (having 18 and 14 sections, respectively) was designed on the
base of the R-transformer prototype with nominal loss 25 dB in the
stop band. The insertion loss functions of the cascaded filters are
presented in Figure 8a. Figure 8b shows the insertion loss of two
filters in cascade. Significantly higher loss excess in the stop band
of the first cascaded filter is the consequence of its much larger rel-
ative stop bandwidth. The range of characteristic impedances of the
particular sections of the initial approximation is 20.9 Ω ≤ Zi ≤

Figure 7  ·  Illustration of periodical repetition of
stop bands for analytically designed stepped
transmission line band-stop filter with commen-
surate sections.

Figure 8  ·  Insertion loss functions of two cas-
caded filters (a) and cascade connection of
the filters (b).

Figure 9  ·  Stop bands of three cascaded filters.
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119.4 Ω. The filter designed in this
manner satisfies condition (1) and can
be used as a good approximation for
the next optimization stage.

Experimental Results
In order to confirm the usefulness

of the design method presented in
this paper, three coaxial band-stop
filters have been constructed and
tested. Two of them, designated Filter
I and Filter II, were designed assum-
ing presence of discontinuities
appearing in places where there is a
step change of line geometry. The
third filter, Filter III, was designed by
means of the splining procedure,
applied to the insertion loss frequen-
cy responses, without influence of dis-
continuities. Characteristics of the
filters obtained experimentally were
compared with theoretical curves,
and the influence of discontinuities
on the characteristics of the designed
filters was considered.

Filter I
The first filter was designed

assuming the following parameters:
ƒd = 3.1 GHz, ƒ1 = 3.6 GHz, ƒ2 = 4.55
GHz and ƒu = 10 GHz (see Fig. 3)
with the admissible characteristic
impedance range given by Zmin = 20
Ω and Zmax = 100 Ω. It was assumed
that S11 < –23 dB in the pass band
with the loss in the stop at least 40
dB. The filter was implemented in the
coaxial line technology, with the
diameter of the outer conductor equal
to 10 mm, and terminated with 50 Ω
type N connectors.

During the first design stage,
parameters of the band-stop filter
having 20-sections were evaluated
using R-transformer prototype.
Characteristic impedances of this ini-
tial approximation are limited to the
range determined by Zmin A = 22.7 Ω
and Zmax A = 110.2 Ω, satisfying con-
dition (1). In the next stage, the filter
was optimized, taking into account
the influence of discontinuities.
During the optimization process, the
characteristic impedance of the last

section resulted in a value of 50 Ω.
Thus, the filter is composed of 19 sec-
tions. Parameters of the filter
obtained after the optimization pro-
cess are given in Table 1 and con-
struction of the filter is shown in
Figure 10.

Figure 11 and Figure 12 show the
experimental and theoretical S11 and
S21 responses of the filter. Theoretical
characteristics were computed
assuming the influence of discontinu-
ities, according to the model intro-
duced in this paper. It should be
pointed out that there is a very good
agreement between these curves in
the whole analyzed frequency range.
In spite of the potential for higher,
parasitic modes, their influence on
filter responses was not observed.

For evaluation of the influence of
discontinuities on the filter response,
experimental and theoretical curves

were compared (with no discontinu-
ity influence taken into account), see
Figure 13. It was observed that there
is some degradation of the resulting
theoretical S11 response in the pass
band. It was also found that theoreti-
cal responses are shifted towards
higher frequencies, and the theoreti-

Figure 10  ·  Construction outline of
Filter I.

Figure 11  ·  Theoretical (solid line)
and experimental (dashed line) S11
responses of Filter I.

Table 1  ·  Electrical and construc-
tion parameters of Filter I.

Figure 12  ·  Theoretical (solid line)
and experimental (dashed line) S21
responses of Filter I.
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cal stop band is wider than the exper-
imental one. This means that the fil-
ter designed primarily without con-
sidering the discontinuities should be
shortened (each section) by 1 or 2 per-
cent, in order to obtain a response
close to the theoretical curves.

Filter II
The second filter was designed to

meet the following requirements: ƒd =
1.15 GHz, ƒ1 = 1.5 GHz, ƒ2 = 2.1 GHz
and ƒu = 6 GHz (see Fig. 3) with the
characteristic impedance range of
particular sections given by Zmin = 25
Ω and Zmax = 90 Ω. It was assumed
that S11 < –23 dB in the pass band
with the stop band loss at least 30
dB. The filter was implemented in
coaxial line technology, with the
diameter of outer conductor equal to
16 mm, and terminated with stan-
dard 7/16 connectors (VSWR < 1.01
in the pass band and VSWR < 1.15 in

the stop band was obtained).
In the first design stage, parame-

ters of a band-stop filter  having 18-
sections and designed on the basis of
the R-transformer prototype were
found. Characteristic impedances of
this initial approximation are in the
range limited by Zmin A = 18.4 Ω and
Zmax A = 135.9 Ω, and satisfy condi-
tion (1). In the second stage, parame-
ters of the filter were optimized
assuming presence of discontinuities.
During the optimization process the
impedance of the last section
attained 50 Ω and a filter having 17
sections was finally obtained. Table II
shows the filter parameters after
optimization, and its construction is
shown in Figure 14.

Figure 15 and Figure 16 show the
experimental and theoretical S11 and

S21 curves of the filter. The influence
of discontinuities was taken into
account in case of theoretical charac-
teristics. It should be pointed out that
there is a very good agreement
between theoretical and experimen-
tal responses in the whole analyzed
frequency range. It confirms very
high practical value of the method
described in this paper. As in the case
of Filter I, substantial influence of
parasitic modes on the responses of
the filter was not observed.

In order to evaluate the influence
of discontinuities on the response of
the filter, experimental and theoreti-
cal characteristics of Filter II were
compared (neglecting the influence of
discontinuities), see Figure 17.

It was observed that theoretical
characteristics obtained in this way
are shifted towards greater frequen-
cies. The theoretical stop band of the
filter is greater than the same band
found experimentally. Degradation of
S11 curves in the pass band was not
observed. It is the result of smaller
influence of discontinuities in the
pass band of Filter II, which follows
from the fact that the characteristic
impedance range of Filter II is nar-
rower than the respective range for
Filter I. In the case of Filter II, the
diameter of the coaxial line outer
conductor in the pass band is also
smaller with respect to the wave-
length λ.

Figure 13  ·  Comparison of experi-
mental (dashed line) and theoreti-
cal (dotted line) S11 and S21
responses of Filter I obtained
assuming the lack of discontinu-
ities.

Figure 14  ·  Construction outline of
Filter II.

Table 2  ·  Electrical and construc-
tion parameters of Filter II.

Figure 15  ·  Theoretical (solid line)
and experimental (dashed line) S11
responses of Filter II.
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Making use of the above conclu-
sions it can be assumed that in some
cases the filter designed without tak-
ing the discontinuities into account
can have characteristics satisfying
the requirements only after shorten-
ing the filter by 1 or 2 percent (equal
shortening of each section).

Filter III
The third filter was designed

assuming that the pass and stop
bands are determined by the follow-
ing frequencies: ƒd = 1.20 GHz, ƒ1 =
1.45 GHz, ƒ2 = 2 GHz and ƒu = 12
GHz (see Fig. 3). The characteristic
impedance range of particular sec-
tions was limited by Zmin = 25 Ω and
Zmax = 90 Ω. It was assumed that S11
< –23 dB in the pass band and the
insertion loss in the stop band should
not be less than 20 dB. This filter was
implemented using coaxial line tech-
nology with the outer diameter equal
to 16 mm and terminated in the same
manner as Filter II.

Previously, the way to obtain the
initial approximation for the opti-
mization process was described.
Table III shows parameters of the fil-
ter obtained using the optimization
procedure, in which the lack of dis-
continuities was assumed.
Construction outline of Filter III is
shown in Figure 18.

Figure 19 and Figure 20 show the
experimental and theoretical curves
of S11 and S21 of Filter III.
Divergence between these curves is
small in the low frequency region and
is growing with frequency. It is the
opinion of the author that the para-
sitic modes (near the upper limit of
the analyzed frequency range) and
the growing influence of discontinu-
ities, which were not taken into
account during the design stage, are
the cause of these divergences.
Theoretical stop band of the filter is

narrower in comparison with the
measured result. As in the case of
Filter II, degradation of S11 in the
pass band was not observed.

As the design process was, in the
case of Filter III, limited mainly to
the amplitude synthesis (reducing
the characteristic impedances of each

Figure 16  ·  Theoretical (solid line)
and experimental (dashed line) S21
responses of Filter II.

Figure 17  ·  Comparison of experi-
mental (dashed line) and theoreti-
cal (dotted line) S11 and S21
responses of Filter II obtained
assuming the lack of discontinu-
ities.

Figure 18  ·  Construction outline of
Filter III.

Table 3  ·  Electrical and construc-
tion parameters of Filter III.
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section to the prescribed limits).
Table 3, col. 7, shows that the theo-
retical characteristics of the filter has
a periodic form, as confirmed by the
measurement in Figure 21.

The group delay of Filter II with a
little ripple slightly above the pass
band (1.15-1.5 GHz) is presented in
Figure 22 as an example of typical
group delay for filters under consid-
eration.

Conclusions
In this article, useful method of

band-stop filter design has been pre-
sented, in which construction con-
straints, formulated by means of the
characteristic impedance range of its
particular sections, are taken into
account. The insertion loss frequency
response of the designed filters is
close to the equal-ripple in both the
pass- and stop-band.

In order to confirm the usefulness
of this method, the three coaxial
band-stop filters were designed, man-
ufactured and tested. One of the fil-
ters was designed by means of the
original spline procedure applied to
the insertion loss frequency respons-
es. As it follows from the comparison
of theoretical and experimental char-
acteristics, proposed spline procedure
makes possible the design of band-
stop filters with relatively broad stop
bands.

It was also found that there is a

very good synchronization between
experimental and theoretical
responses (determined in presence of
discontinuities) in the wide frequency
range. The observed divergences are
very small and remain constant in
function of frequency. In case of
neglecting the discontinuities during
the design process, theoretical char-
acteristics differ from the experimen-
tal as follows:

(a) The real curve is shifted
towards lower frequencies,
with respect to the theoretical
characteristic.

(b) The measured stop band of the
filter is narrower than the the-
oretical one.

(c) In some cases the measured
S11 characteristic in the pass
band is a deformed version of
the theoretical one.

All discrepancies mentioned

above are proportional to the range of
characteristic impedances of particu-
lar sections of the filter and to the
transversal dimensions of the filter,
in relation to the wavelength λ (for
example, the diameter of the outer
conductor of the coaxial line).

It can be also assumed that in cer-
tain cases the filter can be designed
without taking into account the influ-
ence of discontinuities. In this case it
would be recommended to shorten
equally each filter section by one or
two percent for partial compensation
of discontinuities.

All of the analyzed filters intro-
duce a pass-band loss, which was
found to be not greater than 0.2 dB.
Group delay of all tested filters is
nearly constant in the pass band with
a little ripple above.
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Figure 21  ·  Illustration of periodicity of the stop bands
of Filter III being a cascade of two filters (theoretical
characteristics without the influence of discontinuities).

Figure 22  ·  Group delay for Filter II. This behavior is typ-
ical for the type of filters examined.


