
16 High Frequency Electronics

High Frequency Design

SIGNAL INTEGRITY

High-Frequency Algorithmic
Advances in EM Tools for
Signal Integrity—Part 1

By John Dunn
AWR Corporation

Only 30 years ago,
electromagnetic
(EM) simulation

software was not a main-
stream tool of the practic-
ing electrical engineer, yet
today it is essential for
successful circuit design.
EM simulation is used
throughout the design

process—creating and verifying models,
checking the layout of the circuit for parasitic
coupling issues, and verifying the final circuit’s
performance. The most obvious reason for the
growing use of EM simulation is its increasing
ability to simulate large circuits of practical
interest, made possible by more powerful com-
puters. What is not as well known is that a
number of new conceptual breakthroughs in
EM theory have also contributed greatly to the
increased power of EM simulators.

The purpose of this two-part article is to
introduce the reader to two of the more suc-
cessful of these ideas. It is important that users
of EM software understand the basic algo-
rithms being used if they are to use the tools
effectively and avoid common pitfalls. This first
article focuses on advances in simulation meth-
ods for planar solvers, or as they are sometimes
called, 3D planar or 2.5D simulators. We will
see how the time required to solve a problem
can be dramatically sped up by using fast, com-
pressed, iterative solution methods. The meth-
ods have been developed over the past 20 years
and are now reaching fruition in commercially
available software. The second article explains
how fast frequency sweeping allows for accu-
rate solution of a problem over a frequency
range with fewer frequency points.

The Basic Challenge
EM problems do not scale well with

increased problem size. This means that as
the problem becomes larger with more
unknowns, the computational resources
required increase at faster than a linear rate
with the problem size. Planar simulators work
by meshing the conductors in the circuit up
into small cells, usually triangles or rectan-
gles. The most popular EM technologies
require the problem to scale by the power of 3,
or O(N3). By this we mean that if the number
of cells is doubled, the solution time increases
by a factor of eight (23). Because of this faster-
than-linear scaling, increasing the size of the
problem quickly becomes impractical. The fast
methods explained in this article scale as
O(NlogN), which is much better than O(N3).

Classes of EM Simulators
Three classes of EM simulation technology

are shown in Figure 1—cross sectional

This two-part series discuss-
es new advances in the

algorithms underlying EM
simulation techniques for
signal integrity designers.
Part 1 examines fast solu-

tion techniques for Method
of Moments solvers

Figure 1  ·  Comparison of different classes of
EM simulators.
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solvers, 3D methods, and the method of moments, which
is the focus of this article. The horizontal axis indicates
how general a geometry the solver can analyze, and the
vertical axis shows relative computation time.

3D methods work by meshing the geometry into small
cells, and the electric field is then solved in each cell. The
cells are usually 3D triangular shapes known as tetrahe-
dra, but other cell types such as cubes are possible. The
finite element method is the most well known, but other
good choices exist. The main advantage of these methods
is their generality with regard to the geometries they can
solve. The main disadvantage is they are computational-
ly very intensive.

Cross sectional solvers are available in many com-
mercial circuit simulators. Their purpose is to character-
ize transmission lines by taking the cross-section of the
line and solving for its electrical parameters per unit
length. This is accomplished by solving a simplified set of
Maxwell’s equations, the quasi-static approximation for
the cross-sectional geometry. These solvers are extreme-
ly fast and make it easy to get a line’s electrical proper-
ties. The user normally does not even know that he or she
is using electromagnetics when one of these models is
used. The disadvantage is that they work only for trans-
mission line models.

Moment methods (MoM), the technique used in the
middle bubble of Figure 2, work by solving for the cur-
rents on the circuit’s conductors. Moment method codes
are typically written so that they can solve for currents on
horizontal conductors and vertical conducting walls and
vias. This is the reason for the terms “2.5D” and “3D” pla-
nar solvers. Moment methods require a Green’s function
in order to calculate the coupling between all the current
elements on the conductors. Unfortunately, the Green’s
function can only be solved for certain geometries. In par-
ticular, the conductors must be on infinite, homogeneous,
dielectric layers.

It is possible to have an infinite ground plane on the
bottom of the dielectric stackup, and a metallic cover if
desired. A variation of the method also allows the problem
to be bounded by a conducting rectangular box. The
requirement of planar, dielectric layers is why the method
is not as general as the 3D methods mentioned earlier.
However, the planar simulators cover a wide variety of
practical technologies—printed circuit boards, modules,
and chips, for example. They can usually solve larger
problems than full 3D simulators, as they are solving only
for currents on the conductors compared to the electric
fields throughout the entire space of the problem.

The Solution Time for Conventional Planar Solvers
The method of moments solves for the unknown cur-

rents on the conductors. This is accomplished by first
meshing the conductors into a finite number of cells and

then solving for the unknown current on each cell. The
unknown current is simplified on each cell, and a linear
approximation is mostly used. The job of the simulator is
to find the unknown linear varying current on each cell.
A matrix equation is set up and solved for the unknown
currents.

Each matrix entry gives the interaction between the
currents and charges of two cells by using the Green’s
function. This set of interactions can be thought of as
mutual capacitance and inductance between the cells. In
addition, there are self-capacitance and inductance terms
and resistance terms. Radiation and phase delay between
the elements is also included. After the interactions
between the mesh elements have been calculated, the
matrix can be formed. If there are N cells in the problem,
the size of the matrix is N × N and there are N2

unknowns. The matrix is solved for the unknown currents
on the conductors.

How long does it take for MoM codes to simulate a
given size structure? The answer is shown in Figure 2.
The Green’s functions are first calculated for the given
geometry, which takes about O(N) time, where N is the
number of meshes (Note that O(N) means order N). The
time it takes to simulate with N unknowns is K × N
where K is a positive number. Compare this to O(N2): The
time is equal to M × N2, where M is a positive number. For
a large problem, the O(N2) process will dominate the O(N)
process, but the constant K could be larger than M, so the
O(N) could dominate the time of simulation for a small
problem. The matrix next needs to be filled (i.e., each ele-
ment in the matrix must be calculated), which takes
O(N2).

The matrix equation must then be solved, and with
conventional techniques, and this requires O(N3). For a
large problem, the solution time will dominate. MoM is an
O(N3) process, so if the number of meshes is doubled, the
simulation will take eight times longer. The amount of

Figure 2  ·  Simulation times for the MoM.
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consumed memory is also a factor, as the matrix must be
stored while the matrix equation is solved. Virtual mem-
ory is used when the physical memory is consumed, swap-
ping data in and out of the hard drive. This is a very slow
process, taking milliseconds instead of microseconds each
time memory is accessed. In practice, the simulation
becomes impractical once the computer begins to use vir-
tual memory.

To determine how large a problem can be solved on
today’s computers, assume each unknown is represented
by 16 bytes of data (double-precision complex floating
point). 1000 unknowns requires 1000 × 1000 × 16 = 16
Mbytes of RAM, and 10,000 unknowns takes 1.6 GBytes
of RAM. A 32-bit computer can access up to 4 GBytes of
RAM, with much of that reserved for the operating sys-
tem and other applications, and a practical limit for RAM
available for the simulation is 2 GBytes, which corre-
sponds to about 10,000 cells. This memory limitation is
overcome by 64-bit operating systems, and 16 GBytes of
RAM is typically installed in these computers.

Fast Iterative Solvers for MoM
The biggest bottleneck in simulating large problems

with MoM simulators is solving the matrix equation. A
direct solve, which requires the direct solution of the
matrix, is O(N3), so doubling the number of unknowns
increases the simulation time by a factor of 8. This pro-
duces a near order-of-magnitude increase in solution time
and memory requirements and does not lend itself well to
larger physical problems. Fortunately, new developments
in solver technology have overcome several hurdles and
have reduced solution time. Globally, these techniques
attempt to bypass a direct solution of the entire matrix
and in doing so avoid the O(N3) computation cost.

The methods work by iteratively solving a smaller,
approximate representation of the matrix. These methods
rely on a well-conditioned matrix. The condition number
of a matrix is a figure of merit that indicates how easily
the matrix can be solved with finite precision arithmetic
on a computer. A poorly conditioned matrix (large condi-
tion number) indicates that the solution will not be accu-
rate, or perhaps not even solvable. EM numerical meth-
ods usually result in poorly conditioned matrices because
of the nature of the equations. The biggest challenge for
developers of fast EM solvers is overcoming the poor con-
ditioning of the matrices that arise for various reasons. To
understand these poorly conditioned matrices and how to
mitigate them, it helps to focus on one typical cause of
poor conditioning, the so-called DC catastrophe.

MoM codes solve for currents and charges on conduc-
tors, and there is one equation that involves both current
and charge. Current and charge are not independent
quantities for frequency domain problems. A current
changing in space means that there is a charge buildup.

For example, when current goes around a bend in a line
there is charge buildup at the corner of the bend.

At DC, charge and current are independent of each
other, with charge the source of electric fields and current
the source of magnetic fields. It is only when the frequen-
cy is non-zero that electric and magnetic fields produce
each other and current is related to charge. If solving one
equation for current and charge at DC, this equation has
no unique solution. At low frequencies, the solution is
problematic and the condition number of the matrix is
very large. The ultimate example of this problem is at DC,
where there is not even a unique theoretical solution—
resulting in the “DC catastrophe.” This problem is com-
mon to almost all EM simulators and at low frequencies
is not practically solvable.

“Preconditioners” that operate on the problem in a
way that improves the condition number before trying to
solve it can be used to overcome this problem. The idea is
to take the meshes (or basis functions) and recombine
them into something that allows the charge and current
terms to be separated in the equation. This allows the
designer to approximately solve for the two separate
problems of charge and current, producing the approxi-
mate DC electrostatic and magnetostatic solutions. These
approximate solutions can then be used as a good way to
precondition the original matrix to make its solution
practical.

There are many forms of preconditioners. This discus-
sion will focus on the loop-star type, which gets its name
because of its regrouping of the cells, as shown in Figure
3. The loop of cells has no net charge, as the current is
flowing in a closed loop. The star grouping has no net cur-
rent, as the current modeled by this configuration of cells
flows outward from the center. In the loop-star precondi-
tioner, the problem can be reformulated by using the loop
configuration and the star configuration as two new basis
functions to describe the problem, This is much like the
way vectors (1,0) and (0,1) can be used to describe points
in the Cartesian plane. The preconditioner should thus
give the matrix a lower condition number because the
matrix produced by the new basis should have more zero

Figure 3  ·  Loop-star preconditioning of cells.
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entries then the initial formulation.
Poorly conditioned matrices can occur in a variety of

other ways besides low-frequency issues. For example,
there could be a situation in which a transmission line
has non-zero thickness. There are currents on both the
top and bottom sides of the line, but if the line is not very
thick, the currents are almost on top of one another
(Figure 4).

If the line becomes infinitely thin, there are two
unknown currents to be solved for but only one equation
for the total current, so there is no unique solution to the
problem. Figure 4 shows how the currents become very
poorly behaved as a result of the poor conditioning of the
matrix. It is important to avoid thick lines that are too
thin, or in the case of boundary element methods, regions
that are too thin. Modern planar simulators therefore
need to employ a variety of preconditioners to cover the
various causes of poorly conditioned matrices.

The Compressed, Fast Solve Algorithm
Once the matrix has been properly conditioned, the

next challenge is to solve the better-conditioned problem
in faster than O(N3) time. Methods have been developed
that can go as fast as O(N lnN) time. The two most com-
mon methods are fast multipole techniques and com-
pressed matrix techniques. These methods are based on
the fact that the interaction between groups of cells that
are far apart have two important properties: the interac-
tions between the groups are small, and they are all about
the same value. To understand this concept, referring to
the two groups of cells separated by a large distance in
Figure 5, imagine the size of the interaction between a
cell in the left group and a cell in the right group, R.
Compare it to the interaction between the same cell in the
left group and a neighboring cell in the right group. They
(R1 and R2) are probably about the same. This fact is
exploited in fast multipole methods (Figure 6) in which

the Green’s function is expanded out as a series in d,
where d is the local distance of the second group from its
center of mass.

The fast multipole method has become extremely pop-
ular for antenna and radar codes but has three limita-
tions when applied to SI problems. First, the method
relies on large distances compared to wavelength, which
is normally not the case for an SI problem. Second, the
method relies on expanding the Green’s function out into
a series of functions, but codes for SI engineers have more
complicated Green’s functions, making this procedure dif-
ficult. Third, fast multipole methods can become numeri-
cally unstable when the size of the problem is not electri-
cally large.

Fast matrix compression methods are more commonly
used in the SI community. These methods are similar to
multipole methods because they rely on groups of cells
that are far away and have about the same interaction
strength as shown in Figure 7. However, they do not rely
on analytical manipulations of the Green’s function.
Rather, they numerically exploit the fact that the matrix
entries for a given block of the matrix are about the same
because of the previous observation that in this given
block the interactions are between two far away cells. For
example, Figure 7 shows a block in the matrix with cells
25 and 27 interacting with cell 1. Elements A1,25 and

Figure 4  ·  Thick line that is poorly conditioned.

Figure 5  ·  Two groups of cells in a multipole method.

Figure 6  ·  Expanding out the Green’s function in the
multipole method.
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A1,27 will have about the same values as the interaction
is between cells in two different blocks.

Since the elements in the block all have about the
same values, it is possible to represent the elements with
many fewer members. Using mathematical algorithms
very similar to those from compression standards like
JPEG or MPEG, the number of members needed to rep-
resent the block can be reduced. For the world of images,
compression methods permit digital or video cameras to
represent pictures using less data than the uncompressed
original. The matrix representing the photograph or video
is represented by a series of reduced matrices that pro-
vide an approximation that is “good enough” in most
cases. Of course, what is actually good enough is in the
eye of the beholder, but suffice it to say that this tech-
nique can be applied also to SI problems to gain measur-
able improvements in EM performance while achieving
acceptable accuracy.

Once the matrix blocks have been reduced in size
using these compression algorithms, the matrix is solved
using an iterative solver. This is perhaps the key differ-
ence from the direct solve technique. The iterative solver
never solves the original matrix equation and is therefore
not necessarily bound by the O(N3) scaling but instead
multiplies the compressed matrix by a vector. If per-
formed correctly, the entire process can potentially pro-
ceed in O(NlnN) time. It should be noted that to get
O(NlnN) scaling the actual matrix is never calculated, as
this takes O(N2) time. Rather, successive approximations
of the matrix are calculated in a consistent manner.
Achieving overall improvement with a particular imple-
mentation of an iterative solver depends on whether the
whole is better than the direct solver.

All the pieces of the iterative solver must when work-
ing in concert take less time than the direct solver with
its brute force approach. The exact increase in speed
achieved by the iterative solver depends on the details of
the geometry being studied. The method relies on groups
of blocks that are far from one another. Geometries in
which there are a large number of nearby cells (overlap-
ping shapes on different layers in a package, for example)
will not compress as well as geometries in which most
shapes are spread out on one layer.

With all the components of an iterative solver working
properly and for problems of a few thousand unknowns,
an increase in speed should be achieved when compared
to the direct solver shown in Figure 2. However, the direct
solver continues to perform well, especially at RF and
microwave frequencies with several hundred unknowns.
This point should not be overlooked because some modern
commercial EM solvers incorporate both direct and itera-
tive solvers with algorithms that analyze a particular
problem and then select the fastest or most accurate
method.

Challenges Remaining
Fast solvers promise to give designers a tool that can

solve complex problems that are simply not approachable
with traditional methods. However, a number of research
challenges remain. As discussed in this article, precondi-
tioners must be used for the matrices to be well condi-
tioned and the methods to work. Right now, there is no
one best preconditioner. It is also not always clear which
one will work well for a given problem. As the methods
enter into more into mainstream usage, this problem will
become more relevant to the designer. Therefore, the chal-
lenge for EM tool developers is to make the methods more
robust and automated.

Next Month
The second article in this two-part series will describe

ways to reduce solution times by using fewer frequencies
while maintaining the frequency resolution of the result-
ing dataset. It will address intelligent selection of simula-
tion frequencies such as fast frequency sweeping algo-
rithms that reduce the number of frequencies required to
obtain the desired frequency range as well as efficient
methods to map EM solutions from the frequency-domain
to the time-domain.
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Figure 7  ·  A matrix block between two groups of cells.


