
18 High Frequency Electronics

High Frequency Design

SDR ARCHITECTURE

Software Defined Radio
Architecture for NASA’s
Space Communications
By Maximilian C. Scardelletti, Richard C. Reinhart, Monty Andro, NASA’s John H. Glenn
Research Center; Dale J. Mortensen, Thomas Kacpura, ZIN Technologies; Carl Smith,
John Liebetreu, General Dynamics—C4S; and Allen Farrington, Jet Propulsion Laboratory

The National Aero-
nautics and Space
A d m i n i s t r a t i o n

(NASA) is developing a
standardized platform for
future space communica-
tions needs, based on soft-
ware-defined radio (SDR)
concepts. The goal is to
have a system that does

not require a complete custom hardware/soft-
ware design for each mission. Instead, NASA
desires an adaptable and scalable system that
can accommodate the performance demands of
many different radio systems. In addition, the
hardware/software architecture is intended to
protect the intellectual property rights of con-
tractors regarding the internal operation of the
portions of the system they provide.

Introduction
This study defines a hardware architecture

approach for software defined radios that will
enable commonality among NASA space mis-
sions. The architecture accommodates a range
of reconfigurable processing technologies
including general purpose processors, digital
signal processors, field programmable date
arrays (FPGAs), and application specific inte-
grated circuits (ASICs) in addition to flexible
and tunable radio frequency (RF) front ends to
satisfy varying mission requirements.

The hardware architecture consists of
modules, radio functions, and interfaces. The
modules are a logical division of common radio
functions that comprise a typical communica-
tion radio. This paper describes the architec-
ture details, module definitions, the typical
functions implemented by each module and

the module interfaces. The trade-offs between
component-based, custom architecture and a
functional-based, open architecture are also
discussed. Readers should note that the archi-
tecture does not specify an internal physical
implementation for each module, nor does it
mandate the standards or ratings of the hard-
ware used to construct the radios.

Advantages of SDR
A software defined radio is a collection of

hardware and software technologies that is
reconfigurable to provide a variety of systems
for communication networks. Software defined
radios are programmable systems with parti-
tioned software and hardware modules con-
trolled by managing software conforming to
defined interfaces, to allow design reuse, soft-
ware portability, and to provide scalability
across hardware platforms. The advantages of
flexible and adaptable operation in the digital
and RF domains offer significant capabilities
and performance compared to legacy radios
with fixed, dedicated functionality.

Software defined radio has the potential to
save missions cost when building multi-mode,
multi-band, multi-functional radio systems
that can be dynamically changed using soft-
ware upgrades. In other words, the same piece
of “hardware” can be modified to perform dif-
ferent functions at different times through
reprogrammable software modules, reducing
the total number of radios required for a given
mission. Software defined radios based on a
standard architecture provides NASA with a
consistent and common framework to develop,
space qualify, operate and maintain these
complex reconfigurable and reprogrammable
radio systems for space.

NASA is developing a
software-defined radio

standard for future space
communications that

allows both hardware and
software reuse, system

scalability, and practical
hardware upgrades

From July 2007 High Frequency Electronics
Copyright © 2007 Summit Technical Media

20 High Frequency Electronics

High Frequency Design

SDR ARCHITECTURE

A standard open architecture has
published interfaces enabling differ-
ent vendors to provide radios that
meet the interface standard, provid-
ing commonality among different
vendor implementations, and
enabling interoperability between
providers of different hardware and
software. Open interfaces also allow
flexibility for component replacement
and technology insertion. Common-
ality among radios, design reuse, and
software reuse potentially reduce
NASA mission risk. The Space
Telecommunications Radio System
(STRS) Architecture [1] is one
approach under consideration to
establish a standard open architec-
ture for NASA’s SDR developments.

As NASA looks to the future of
space exploration, the growth of recon-
figurable electronics and software
defined radio provides an opportunity
to change the way space missions
develop and operate space transceivers
for communications and navigation.

Custom Architecture
A software defined radio architec-

ture is: “a comprehensive, consistent
set of functions, components, and
design rules according to which radio
communication systems may be orga-
nized, designed, constructed, de-
ployed, operated and evolved over
time. A useful architecture partitions
functions and components such that a)
functions are assigned to components
clearly and b) physical interfaces
among components correspond to logi-
cal interfaces among functions” [2].

Current implementations for
space deployed SDR hardware are
typically represented in terms of the
device components which comprise
the software defined radio. Figure 1
shows a high-level, component-based,
custom hardware architecture. The
custom approach emphasizes typical
hardware transceiver elements such
as ASICs, FPGAs, specific memory
elements (e.g. RAM, EEPROM), phys-
ical interfaces (RS-232, Spacewire,
etc.), and RF signal conversion and
filtering components (e.g., BPF, spe-
cific ADC). These are generally repre-
sented using available technology.

The diagram illustrates custom

connections between radio processing
devices and between the processing
elements and the RF front end. These
custom radio interface connections
are often proprietary to the radio
developer.

The custom approach can provide
an efficient solution to meet a partic-
ular mission’s requirements. Design,
development, testing, and space qual-
ification are specific and unique for
that implementation and radio
design. However, modification of the
design and new software development
is often required to accommodate new
parts required due to obsolescence
and to allow for technology insertion
to meet new mission requirements.

The proprietary interfaces limit
NASA’s ability to extend and reuse
the investments in software develop-
ments from one mission to another.
Also, the custom implementation is
limited to missions with a similar set
of requirements and requires NASA
to use the same provider. Although
hardware is reused, the need for a
specific vendor’s radio increases costs
due to loss of competition.

STRS Open Architecture
Figure 2 shows the current STRS

open hardware architecture [3]. The
open hardware architecture empha-
sizes the radio functions and key
interfaces. The radio functions are
distributed among different modules,
to organize different platform ser-
vices and waveform functions within
the radio. Modules are a logical divi-
sion of functionality to maintain com-
mon interface descriptions, terminol-
ogy and documentation among SDR
developments. A waveform comprises
the end to end functionality (e.g. mod-
ulation, coding, frequency conversion,
filtering) and bidirectional transfor-
mations applied to information con-
tent that is transmitted over the air.

The three major modules of the
architecture are shown, illustrating
the command and control, signal pro-
cessing, and analog portion of a radio:

The General Purpose Module

Figure 1 · Custom implementation hardware architecture.

July 2007 21

(GPM) provides the basic software
execution processes based on general
purpose processors. The GPM is a
required module supporting the oper-
ating environment responsible for
waveform instantiation and execu-
tion, radio services, and hardware
abstraction. The Signal Processing
Module (SPM) and RF Module (RFM)
conduct signal processing and RF
front end functions, respectively.
Other modules not explicitly shown
include security, networking and
optical as required by the transceiver.
The radio developer has the flexibili-
ty to combine these modules and
their functionality as necessary dur-
ing the radio design process to meet
the specific mission requirements.

Several key external interfaces of
the architecture include Host
Telemetry, Tracking and Command
(TT&C), Ground Test, Data, Clock, and
Antenna. The Host/TT&C interface
represents the low-latency, low-rate
interface for the spacecraft (or other
host) to communicate with the radio.
This type of information includes
health, status, and performance
parameters of the radio and the link in
use. In addition, this telemetry often
includes radiometric tracking and nav-
igation data. Information delivered
through this interface includes config-
uration parameters, configuration
data files, new software data files, and
operational commands.

The Ground Test Interface is exclu-
sively used for ground-based integra-
tion and testing functions. It typically
provides low level access to internal
parameters that are unavailable to
the Spacecraft TT&C Interface.

The Data Interface is the primary
interface for information that is trans-
mitted or received by the radio. This
interface is separate from the TT&C
interface because it typically has a dif-
ferent set of transfer parameters (pro-
tocol, speeds, volumes, etc) than the
TT&C information. This interface is
also characterized by medium to high
latency and high data rates.

The Clock Interface is used for

receiving the frequency reference
required to support navigation and
tracking. This type of input frequency
reference is essential to the operation
of the radio and provides references
to the SPM and RFM.

The Antenna Interface is used for
connecting the electromagnetic sig-
nal (input or output) to the radiating
element or elements of the space-
craft. It also includes the necessary
capability for switching among the
elements as required.

Some internal interfaces must be
defined in an open manner to support
the overall goals of the architecture.
Internal interfaces include the sys-
tem bus between the GPM and SPM,
various control lines between the
GPM and RFM, ground test interface
to each module from the GPM, and
frequency reference from the RFM to
the other modules.

The System Bus provides the pri-
mary interconnect between the GPM’s
microprocessor and memory elements,
interconnection to the external inter-
faces, and Telemetry, Tracking, and

Command and Ground Test
Interfaces. The System Bus is the pri-
mary interface between the GPM and
the SPM. The System Bus provides
the interface to reprogram and re-con-
figure elements of the SDR. It sup-
ports the read/write access to the SPM
elements, as well as reloading of con-
figuration files to the FPGAs.

The interface between the GPM
and the RFM is primarily a
control/status interface. It is impor-
tant to have a hardware-based confir-
mation and limit-check on the soft-
ware controlling any RFM elements.
The system control element of the
GPM provides this functionality thus
keeping the GPM RFM control bus
within operational limits.

The internal Test and Status
Interfaces provide specific control and
status signals from different modules
or functions to the external Ground
Test Interface. These interfaces are
used during development and testing
to validate the operation of the vari-
ous radio functions.

Finally, the data paths are the

Figure 2 · Open hardware architecture.

22 High Frequency Electronics

High Frequency Design

SDR ARCHITECTURE

various streams of bits, symbols, and RF waves connect-
ing the major blocks of the primary data-path. For any
particular implementation, the data path or bitstreams
are defined by the particular waveform implemented in
the functional blocks. The interface between the RFM and
SPM, however, should be well-defined and should have
characteristics suitable for that level of conversion
between the analog and digital domains.

This open architecture abstracts functionality away
from specific hardware devices through the hardware and
software interfaces, enabling greater reuse of a design
and minimizing the impact associated with parts obsoles-
cence. Since the software is abstracted from the hard-
ware, there is a greater likelihood of reusing the software
in future developments.

The open architecture approach allows NASA to reuse
its investment in software radio developments, yet:

1. Maintain company proprietary approaches and
designs behind the common interfaces,

2. Reuse the architecture specification among differ-
ent developments and different vendors, and

3. Preserve commonality among designs, develop-
ment, testing, and space qualification processes.

Table 1 summarizes the trade-offs between a custom
architecture and an open architecture SDR approach for
NASA. While the custom approach efficiently meets mis-
sion requirements, the approach is limited to today’s tech-
nologies. The open architecture provides more flexibility
to NASA, yet maintains proprietary implementations by
the respective developers.

To achieve the benefit of hardware and software reuse,
a STRS Repository is envisioned where appropriate
transceiver interfaces, documentation and software arti-
facts submitted by developers are reused by subsequent
developers.

Hardware modules that can be used again for other
missions reduce cost, system integration, and risk. Using

previously developed hardware reduces risk and cost
since the hardware has space flight heritage, has demon-
strated reliability and its space qualification procedures
are known.

Most often, the motivation to change hardware is
either new performance requirements or parts obsoles-
cence. Defining standard interfaces between modules
allows developers to insert new hardware while still
reusing other aspects of the radio. The ability to insert
new hardware allows multiple vendors to contribute.
Software interfaces help mitigate parts obsolescence by
reusing software with the new parts, thus saving devel-
opment time and cost.

Radio Development Process
During the radio development process, one can apply

the open hardware architecture from both a function-
based view and a more component-based view as the pro-
cess evolves, as illustrated in Figure 3. In both instances,
the architecture benefits emerge where software and
hardware modules, documentation, and interfaces can be
common among successive developments.

The radio development process begins with an assess-
ment of mission requirements applicable to the communi-
cations system (e.g. communications and navigation
radio). During this requirements phase the team deter-
mines radio and then, ultimately, waveform functionality
(e.g. modulation type, coding, filtering, frequency conver-
sion) required for the mission. The hardware architecture

Hardware Architecture Tradeoff Summary

Custom

Cost/power efficient for
specific mission requirements

Applicable to today’s
technology

Unique design, test,
space qualification

Proprietary to
specific developer

Open

Published interfaces

Reduces impact of
parts obsolescence

Functions abstracted
from hardware

Retains proprietary
radio aspects

Table 1 · The primary tradeoffs between custom and
open hardware architectures.

Figure 3 · Radio development process.

24 High Frequency Electronics

High Frequency Design

SDR ARCHITECTURE

depicted in Figure 2 illustrates how
this functionality can be divided
among the various standard modules
for consistent terminology and use of
common interfaces regardless of
developer. As the process illustrated
in Figure 3 shows, the mission
designers may access the STRS
Repository to reuse functionality
based in software to reduce time and
cost during the design and develop-
ment phase.

As the transition from functional
description to hardware design and
implementation begins, the module
representation along with published
interfaces aids in reuse, test and ver-
ification. At this stage, designers con-
duct a mapping of waveform func-
tions to specific signal processing and
RF devices. The common architecture
provides waveform independence
from the platform developer through
the standard interfaces. The inter-
faces defined by the standard provide
an open and published interface, yet
protects the intellectual property of
the different developers. Using this

approach, NASA (or in many cases
the prime contractor) could integrate
the best hardware modules from dif-
ferent developers into a single prod-
uct based on the common interfaces.

Applying the Hardware
Architecture

Figure 4 illustrates a working
example of deploying a reconfig-
urable transmit waveform on an SDR
platform while adhering to the hard-
ware architecture. The example
waveform represents typical low rate
command/telemetry waveform;
QPSK modulation, 1/2 rate coded
waveform. Other functions include an
internal data generator, HDLC fram-
ing, bandpass filtering, and digital
upconversion. The waveform func-
tions are deployed across the General
Purpose Processor Module, the
Signal Processing Module, and the
RF Module.

The low rate application data
enters the radio through Ethernet
interface of the GPM. The data inter-
face of the SPM is not used. The radio

is controlled through an RS-232 seri-
al interface for control, and reconfig-
uration. The GPM handles the low
rate functions of the waveform such
as HDLC framing, convolutional
encoding, and modulation. The data
is sent from the GPM to the SPM for
filtering, and digital upconversion.
The RFM handles the digital to ana-
log conversion, bandpass filtering,
signal conditioning (e.g. amplification
and IF output. In this case the high-
est output frequency is 70 MHz, thus
a second upconverter is necessary on
the RFM to reach a higher RF.

The operating environment (OE)
abstracts the low speed signal pro-
cessing waveform functions from the
underlying processor according to the
rules of the architecture. In the
example several functions of the
transmit telemetry waveform were
deployed to the general purpose pro-
cessor module to exercise more func-
tionality of the architecture abstrac-
tion. To comply with the STRS
Architecture, the developers must
provide the radio services described
in the STRS Standard and publish
the FPGA wrapper interface used in
the example. This allows the develop-
er to maintain the proprietary char-
acter of their intellectual property
associated with the algorithm portion
of the filtering and upconversion.
This approach exposes the interfaces
used in the FPGA for subsequent
developers, but protects the invest-
ment made by the original developer.
The developer must also provide a
description of the physical hardware
interfaces used in the implementa-
tion and a mapping of the control
interfaces to each of the modules.

Summary
NASA is considering a standard

for software defined radios as they
begin to make their way into NASA
missions. Commonality among differ-
ent developments could include soft-
ware and hardware interfaces, test
points, command protocols, models,
and documentation. There is a role for

Figure 4 · Transmit waveform applied to hardware architecture.

both functional-based, open architec-
ture and device-based representation
in the radio development process.
Representing the architecture as
functions serves as an aid in early
mission and radio functionality defi-
nition and development. The device
oriented representation better applies
during radio design and development.

Developers have agreed that stan-
dardization applied to software radio
hardware will aid development, test-
ing, and verification processes.
However, discussions continue on the
level of standardization and exactly
which interfaces to apply the stan-
dard. The development and advance-
ment of the STRS architecture con-
tinues to be a multi agency and stan-
dards body effort.

Acknowledgements
The authors wish to acknowledge

the contributions of the SDR Forum
Space Applications Work Group
member companies towards this
hardware architecture definition.

References
1. NASA, “STRS Architecture

Description, Release 1.0,” Cleveland,
Ohio, April 2006.

2. J. Mitola, Software Radio
Architecture, John Wiley & Sons, New
York, 2000.

3. NASA, “STRS Architecture
Standard, Release 1.0,” Cleveland,
Ohio, April 2006.

4. JTRS, “Software Communica-
tions Architecture v2.2.2”, Washing-
ton D.C. April 2006.

5. R. Reinhart, et al, “Hardware
Architecture Study for NASA’s Space
Software Defined Radio,” WAMICON
2006, Clearwater Beach, FL, Decem-
ber 2006.

Author Information
Maximilian C. Scardelletti is a

senior research engineer in the
Communications Technology Division
at NASA Glenn Research Center in
Cleveland, Ohio. He received his
BSEE and MSEE from the University

of South Florida in 1997 and 1999,
respectively. He is currently enrolled
at Case Western Reserve University,
where he is working towards his
Doctoral degree in microwave micro-
electromechanical systems (MEMS).
He can be reached by e-mail at maxi-
milian.c.scardelletti @nasa.gov

Richard C. Reinhart received a
BSEE from The University of Toledo

in 1989 and a MSEE from Cleveland
State University in 1993. He has
worked in space communications
since 1989, including the Advanced
Communications Technology Satel-
lite, Ka-band phased array develop-
ment, high rate system analysis, and
software defined radio. Richard is
founder and Chair of the SDR Forum
Space Work Group.

